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This article presents, from a historical perspective, some stereological protocols of the first order. Such
protocols can be implemented to quantify statistically the architecture of thermal spray coatings and their
relevant features (pores, lamellas, etc.). A forthcoming Part II of this article will address some key points
to implement, from a practical point of view, such protocols.
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1. Quantification of Thermal Spray
Coating Architectures

Thermal spray coating structures are built up by sto-
chastic stacking of lamellas resulting from impact, flat-
tening, and rapid solidification of impinging molten or
semimolten particles. These structures form a complex
three-dimensional (3-D) structure with combination of
unique features, such as flattened lamellas, globular pores,
intralamellar cracks, interlamellar delaminations, unmol-
ten near-spherical particles, and their related core-shaped
pores, among the principal ones.

The coating in-service properties derive to a large ex-
tent from the coating architecture that itself depends on
the spray parameters (power, feedstock injection, envi-
ronmental, kinematics, etc.) and the feedstock character-
istics (nature, particle size distribution, impurities, etc.).

Quantifying coating structural attributes is hence of
prime importance for optimizing spray parameter set to
obtain desired in-service properties or, on a more daily
basis, for controlling coating quality. Numerous experi-
mental techniques are available to study thermal spray
coating structures from the points of view of their com-
position, phase content, architecture, and so forth. These
techniques can yield qualitative or quantitative results,
depending on selected protocols.

Metallography is a commonly implemented technique,
as it allows one in a relatively ‘‘simple’’ and ‘‘quick’’ way

to address the coating architecture or to scan the coating/
substrate interface to assess the absence of visible
delamination, embedded grit media, and so forth. Several
specific and very strict arrangements have to be utilized to
prepare samples. This involves implementing optimized
and reproducible metallographic protocols—from sample
cutting to sample polishing—to limit to the maximum
possible extent the introduction of artifacts such as cracks,
scratches, pull-outs, and so forth. While the metallography
is widely encountered within the thermal spray commu-
nity, the coating structures are mostly described from a
qualitative point of view, sometimes in poetic and colorful
styles. A semiquantitative viewpoint by comparing coating
structure to a series of reference structures is found less
often, and in only limited cases are the results presented
from a quantitative viewpoint with adapted size, shape,
and spatial descriptors.

The case of the coating porous content is typical and
quite revealing. The porous content, ‘‘porosity,’’ is of
prime interest and is almost systematically addressed.
Nevertheless in this specific case, developers and engi-
neers consider nearly uniformly only global pore content
(as void volume fraction) and not the pore network
architecture, in terms of pore size, pore shape distribution,
their spatial repartition, and so forth—even though the
pore content is not the most pertinent descriptor for the
coating properties in service. Moreover, the implemented
quantification protocols are not always as robust as they
should be.

Several quantitative tools allowing the quantification of
complex structures exist. They are known as stereological
protocols. These are widely used in as various fields as
biology, neurology, botany, astronomy, earth observation,
metallurgy, and materials science, among various ones.
They have proven also to be applicable to the quantifi-
cation of some specific features of thermal spray coatings
(Ref 1, 2).

This review intends to briefly present these protocols
from a historical perspective. Part II, to be published in a
future issue (‘‘Quantifying Thermal Spray Coating
Architecture by Stereological Protocols: Some Key Points
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to be addressed’’), will aim at developing some practical
advice in view of their practical implementation. This text
does not intend to present exhaustively all of the stere-
ological protocols, but only a few of them that are of
interest in quantifying thermal spray coating architecture.

Moreover, authors are not stereologists; that is to say,
they did not develop or plan to develop stereological
protocols on their own. They implement some of the
stereological protocols presented during the last several
years, with varying success, to quantify thermal spray
architecture. While they may have not succeed systemat-
ically, they feel nevertheless that such tools would merit
being more widely implemented as they make it possible
to address the architecture of thermal spray coatings from
a quantitative viewpoint with relatively simple tools (i.e., a
metallographic microscope equipped with a CCD camera,
image analysis software, and a calculator, or better, a
desktop or laptop computer).

2. Stereology

2.1 Definition

A. Vesterby proposed a simple definition (but complete
from the point of view of the authors) of stereology as the
‘‘the science dealing with the transformation of two-
dimensional (2-D) observations to three-dimensional (3-
D) information, using mathematical, statistical, and geo-
metrical tools’’ (Ref 3). This field considers hence the
estimation of quantities in matter and materials. The ter-
minology was formalized the first time in 1963 at the First
International Congress for Stereology organized in Vien-
na, Austria (April 18-20) by the Wiener Medizinische
Akademie (Ref 4).

Stereology can be conducted at two levels. The first
level considers estimations of quantities, in terms of
number, length, area, or volume. The second level is re-
lated to the spatial organization of bodies of interest, or
objects, with the structures to be quantified. Both levels
provide complementary information about the structure
of matter.

Unlike tomography, stereology does not reconstruct a
3-D object. Indeed, a few cross sections of the object are

considered, and their spatial locations are not recorded.
Therefore, it is impossible to model the 3-D structure
explicitly. Instead, stereology considers nonparametric
‘‘geometrical parameters’’ and the estimation relies only
on fundamental geometric facts. As a matter of fact,
stereology is almost ‘‘assumption-free.’’

If the birth certificate of stereology dated 1963 and if
this field grew and expanded since.*

2.2 A Historic Perspective

2.2.1 The Pioneer Period. Italian Bonaventura France-
sco Cavalieri (1598-1647) (Fig. 1a), former student of
Galileo Galilei, was one of the most influential mathe-
maticians of his time. Of eclectic character, he produced
several studies related to mathematics, optics, and
astronomy.

In 1635 he published Exercitationes Geometricae Sex
(about studies on geometry), in which he developed his
principle of indivisibility. Indeed, Cavalieri’s treatise ap-
pears to specialists who closely studied the original type-
script to be verbose and not clearly written. It is, for
example, difficult to know precisely what he considered to
be an ‘‘indivisible.’’ It seems that an indivisible of a planar
object is a chord of that object. In the same prospect, an
indivisible of a body is a plane section of this body. A
planar object is considered as made up of an infinite set of
parallel chords and a body as made up of an infinite set of
parallel plane sections (Fig. 2). Cavalieri argued that if
each member of the set of parallel chords of a planar
object is sliced along its own axis, the end point of the

Fig. 1 Three pioneers in stereology: (a) Bonaventura Francesco Cavalieri; (b) Georges Louis Leclerc, Count of Buffon; (c) Achille
Ernest Oscar Joseph Delesse

*The International Society of Stereology (ISS, www.stereologysoci-
ety.org), incorporated in 1963, includes members from the fields of
mathematics, statistics, biology, and materials science. It organizes an
International Conference every 4 years (Stereology, Spatial Statistics
and Stochastic Geometry, S4G), the last one having being held in
Prague in 2006 (Sixth International Conference, Prague, The Czech
Republic, June 26-29, 2006). the estimation of quantities and their
spatial distribution in a matter have been challenging problems to
scientists for several centuries. Thus, authors suggest identifying three
major periods during which stereology was progressively developed:
‘‘the pioneer period’’ (16-18th Centuries), ‘‘the disruption’’ (late 19th
and early 20th Centuries) and ‘‘the golden era’’ (second-half of the
20th Century).
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chords still describes a continuous boundary. Then, the
area of the new planar object is the same of that of the
original object, since the two objects are made of the same
chords. A similar approach can be applied to any shaped
body. This constitutes the assumptions of integral calculus
(that was invented by the French Blaise Pascal a few years
later, in 1658), and it is known, once generalized, as the
Cavalieri’s indivisible principles, which can be expressed as:

• Principle No. 1 (related to planar objects): ‘‘If two
planar objects are included between a pair of parallel
lines, and if the lengths of the two segments cut by them
on any line parallel to the including lines are always in a
given ratio, then the areas of the two planar objects are
also in this ratio.’’

• Principle No. 2 (related to solid bodies): ‘‘If two bodies
are included between a pair of parallel planes, and if the
areas of the two sections cut by them on any plane par-
allel to the including planes are always in a given ratio,
then the volumes of the two bodies are also in this ratio.’’

From a more materials-science-oriented point of view,
the Cavalieri’s indivisible principles permit the morpho-
logical estimation of total volume of any population of
objects of interest from the area on a systematic-random
sampling of sections through the objects. These principles
still constitute valuable tools in the computation of areas
and volumes, and they appear as the first basis of stere-
ological protocols of the first level and constitute indeed
the first developed protocol.

Georges Louis Leclerc (1707-1788), Count of Buffon
(Fig. 1b), known for posterity as Buffon, is a French nat-
ural scientist, mathematician, biologist, cosmologist, and
writer, but also a successful industrialist. Nothing less!

His remarkable scientific work was published in an
encyclopedia of 36 volumes: 15 volumes dedicated to
quadrupeds, 9 volumes on birds, 5 volumes on minerals,
and 7 complementary volumes. His encyclopedia influ-
enced the work of two generations of natural scientists. It
is in the fourth volume of its complements (Histoire Nat-
urelle Générale et Particulière, Servant de Suite à l’Histoire
Naturelle de l’Homme, General and Particular Natural
History, Serving as a Suite of the Natural History of Man,
Supplements, Forth volume, XXIII, 1777, p 95-100) that
he described one of his major contributions to mathe-
matics that can be seen as another very first basis of
stereological protocols of the first order based on intercept
principles. This contribution is nowadays very well known
as the Buffon’s needle problem, one of the oldest prob-
lems in geometric probabilities and one of the very first
applications of Monte-Carlo techniques.

If a needle of length l is tossed onto a plane ruled by
parallel equidistant lines, two possibilities can be observed
once the needle has fallen onto the surface: either the
needle touches or crosses one of the lines or the nee-
dle crosses no line (Fig. 3). The probability for which the
needle intersects each line is directly proportional to the
length of the needle, with no further assumption. If
the needle length is equal to the distance separating the
parallel lines, then the probability is a function of p. A
brief description of the mathematical solution is displayed
in Inset 1. From a stereological point of view, the Buffon’s
needle problem provides the theoretical basis permitting

Fig. 2 Cavalieri’s indivisible first principle: (a) chord of an
object; (b) set of parallel chords; (c) new object made of the same
set of parallel chords; both objects (a) and (c) have the same area

llld case #1: the needle 
touches/crosses a 
line

case #2: the needle 
crosses no line

Fig. 3 Buffon’s needle problem

Inset 1: Buffon’s Needle Problem ... and a Simple Solution
Let’s consider a plane ruled by lines spaced apart by a distance d.
Let’s consider a needle of length l.
Let’s consider the size parameter x defined as the l/d ratio (Fig. 3).
For a short needle, that is to say a needle of shorter length that the
distance between two lines, the probability P(x) that the needle falls
on a line is expressed as follows:
P ðxÞ ¼

R 2p
0

l cos hj j
d

dh
2p ¼ 2l

pd

R 2p
0 cos hdh ¼ 2l

pd ¼ 2x
p (Eq 1)

If the needle length equals the distance between two successive lines,
that is to say if x = 1, then the probability becomes:
P ðx ¼ 1Þ ¼ 2

p ¼ 0:626619 (Eq 2)
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the estimation of the total length and the total surface area
of any shaped objects.

2.2.2 The Disruption. The French Achille Ernest Os-
car Joseph Delesse (1817-1881) (Fig. 1c) entered at age 20
the prestigious Ecole Polytechnique where he was at the
top of his class. He subsequently passed through the Ecole
des Mines where he obtained his mining engineer degree.
Brilliant geologist and mineralogist (his geologic maps are
still presented in French schools as examples of remark-
able work), professor at the school of mines of Paris,
academician at the French Academy of Sciences, he
studied the structures of numerous minerals and rocks.
This is where he developed, among other studies, the rock
structural quantification by metamorphism.

In 1847, he demonstrated that the total area of a diluted
phase on random cross sections was proportional to the
total content of the considered phase in the entire speci-
men (Ref 5).

Today, Delesse’s principle provides the basis for esti-
mating the volume of nonclassically shaped objects based
on their profile areas on random sections (see Section 3.1
for further details related to the Delesse’s protocol).

Authors were not successful in finding biographical
basics related to S.D. Wicksell, apart from the fact that he
was a Swedish mathematical statistician in the first half of
the 20th Century. In 1922, Wicksell was confronted with
the problem of determining the number of thyroid glob-
ules in the thyroid gland. From several parallel cross sec-
tions through the thyroid, he counted the number of
globules in each cross section, NA (number of bodies of
interest N per surface area A). After a careful 3-D
reconstruction of the thyroid structure, he demonstrated,
both from the experimental and mathematical points of
view, that the number of globules per unit volume NV

(number of bodies of interest N per unit volume V) cannot
be estimated from the determination of NA (Fig. 4). This
impossibility is known as the corpuscle problem and can

be expressed as follows: ‘‘an accurate estimation of the
number of objects of interest cannot be obtained from
profile counts on individual cross sections.’’ If the first
memoir published in 1925 was related to the case of
spherical corpuscles (Ref 6), the second one (Ref 7) con-
sidered the case of ellipsoidal bodies and Wicksell ex-
tended in its introduction (p 152) the potential application
of the approach to geology and mineralogy.

Since then, numerous attempts failed in trying to
overcome the corpuscle problem using ‘‘correction rela-
tionships’’ (Ref 8, 9). Indeed, using correction relation-
ships simply adds further statistical bias through
assumptions and models.

The contribution to stereology of these two scientists
seems fundamental to authors; Delesse developed a ster-
eological protocol of a very wide application range** and
practically implemented it for practical needs, whereas
Wicksell clearly established bridges between statistical
approaches, topology, and some limitations of stereology,
for example that the determination of the number of
bodies of interest per unit volume was impossible without
introducing bias in the analysis.

2.2.3 The Golden Era. Wars are always periods of
destruction and dramas, but also periods of intense tech-
nological and scientific developments. World War II did
not escape from this law and, among other very noticeable
developments, such as the Quantum Electrodynamics
(QED) for example, materials science was significantly
developed, especially the manufacture of alloys with
superior properties. This resulted in critical need to
quantify alloy microstructures in order to be able to link
the structure to the properties and to control the product
quality. Stereology seems to have benefited of this period
in further developments. The end of World War II marked
the beginning of the golden era for stereology, which
lasted for a few decades. Initially applied by materials
science to quantify the structures of metals and metallic
alloys, the lack of automatic systems and computers ren-
dered the implementation of stereological protocols te-
dious and labor intensive. Progressively, it seems that the
stereology was being marginalized. However, wide avail-
ability of computers since the 1970s has been concomitant
to the explosion of sciences of the living organisms, where
the quantification of tissues is required. The high potential
of stereological protocols was fully utilized when applied
to biology. This field developed new protocols, and pro-
gressively, one observed the transfer of those protocols
back into the field of materials science.

If the Delesse’s protocol makes it possible without
doubt to collect very quickly and very easily data relative
to the volume fraction of features embedded within a
structure, it does not permit assessment of the size or
shape distributions of those features. However, these
define the architecture of the studied structures. If a 3-D

Fig. 4 Wicksell’s corpuscle problem. The number of bodies of
interest (3-D structure) differs from the number of objects (2-D
cross sections)

**We are supposed to use the Delesse’s protocol when quantifying the
pore fraction of thermal spray coatings implementing image analysis.
From author’s experience, the implemented protocols are unfortu-
nately not systematically robust and biases, resulting both from image
treatments and image analysis, are quite often introduced.
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structure can be ‘‘probed’’ by an intercept plane (i.e., the
polishing plane) and if data corresponding to intercept
areas (or length) are recorded, it is then possible to
determine the distribution of sizes of the features that
produced the recorded data. Nevertheless, following this
approach, only a statistical distribution can be determined.
Moreover, three major limitations result from such an
approach:

• It is based on an inverse problem for which small
variations in the measured data (which can arise if a
too limited number of data points is recorded) grow to
much larger variations in the inverse solution.

• It is based on assumptions regarding the shape of the
features (e.g., sphere, cylinder, etc.).

• It considers an isotropic, uniform, and random sam-
pling of the structure.***

In this case, collected data are usually presented into a
discrete histogram rather than a continuous one (Fig. 5).
The bin of the discrete histogram represents the size class.
The width of a size class has to be selected in such a way to
permit each class to cumulate enough data points for a
‘‘reasonable’’ statistical discrimination. The number of
size classes is selected in such a way as to permit a ‘‘rea-
sonable’’ description of the distribution. Most of the time,
from 10 to 15 classes linearly spaced in size up to the
largest data point is selected.

In 1946, Sarkis A. Saltykov, professor at the Erevan
Polytechnical Institute, Erevan, Armenia (formerly
USSR), proposed a methodology to unfold the ‘‘size dis-
tribution of particles in an opaque material from a mea-
surement of the size distribution of their section’’ (Ref 10-
12) based on the aforementioned methodology. He con-
sidered in particular the case of features of spherical
shape. Indeed, the interception of spheres distributed
within an opaque material by a plane will generate a series
of circles of varying diameters, depending on the sphere
location and the sphere diameter distribution (Fig. 6).
Based on probabilistic calculations, Saltykov described the

transfer matrix permitting to unfold the number of sphere
per unit volume and per size class, NVi by correlating this
distribution to the distribution of number of circles per
unit area and per size class, NAi . This contribution to
stereology appears to be of major importance as this
protocol seems to have been the first permitting one to
statically quantify size distributions (see Section 3.2 for
further details related to the Saltykov’s protocol).

One of the major limitations of the Saltykov’s protocol
lies in its inability to consider feature shapes other than
spherical ones. In 1962, the American Robert T. DeHoff
adapted Saltykov’s analysis to apply it to systems of di-
luted particles that consist of spheroids (Ref 13, 14). De-
Hoff is Professor at the University of Florida in
Gainesville, FL and is still active in research at the
Materials Sciences and Engineering Department there.
Many of the shapes encountered in thermal spray deposits
(embedded unmolten particles, splats, globular pores,
etc.), can be approximated by spheroids, that is, ellipsoids
of revolution. These ellipsoids of revolution result from
the rotation of generating ellipses around an axis. Two
morphologies can be considered, prolate or oblate, gen-
erated by rotation of an ellipse around its major axis or its
minor axis, respectively (Fig. 7). The intersection of such
features with a test plane generates ellipses, characterized
by their major axis, M, and their minor axis, m.

Identically to the Saltykov’s protocol, DeHoff’s makes
it possible to unfold the distribution of the number of
features per unit volume, NV, as well as the distribution of
their volume fraction, that is, the distribution of the vol-
ume of those features per unit test volume VV.

Nevertheless, this protocol assumes that the ellipsoids
of revolution embedded within the structure are of iden-
tical shapes, that is, either oblate or prolate. It is hence
required to decide or determine independently whether
the features are oblate or prolate, since ellipses of same
profiles can result from the interception of these ellipsoids
by a test place. Moreover, those ellipsoids need to be as-
sumed to be of same eccentricity, which is to say that the
ratio of the minor axis over the major axis of the modeled
features remains constant (aspect ratio) whatever the size
of the feature. Indeed, such an assumption constitutes a
strong limitation in the applicability of the protocol.
Nevertheless, from the author’s experience, this protocol

Fig. 6 Interception of a distribution of spheres by a plane: (a)
spheres of identical diameter; (b) spheres of different diameters
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Fig. 5 (a) Continuous distributions; (b) discrete distributions

***These techniques can be applied even to materials that are not
isotropic (they are very few real structures for which isotropy can be
assumed). This requires the introduction of correction coefficients
depending on the level of anisotropy.
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can be implemented relatively easily on thermal spray
coating architecture to study the pore size distribution for
example, as in most cases globular pores exhibit a
relatively narrow eccentricity distribution vs. their size.
DeHoff is a very active stereologist who, during his entire
career, promoted this science and its applications, as for
example through reference books (Ref 15, 16), which
propose a simple but complete approach of stereology
(see Section 3.3 for further details related to the DeHoff’s
protocol).

Luis Manuel Cruz-Orive was working at the Depart-
ment of Probability and Statistics of the University of
Sheffield (U.K.) when he solved the ‘‘general spheroid
problem.’’ (Today, Luis Manuel Cruz-Orive is professor in
statistics and probability at the Department of Mathe-
matics and Computing Sciences at the University of
Cantabria, Spain.) Indeed, he developed in a series of two
papers the mathematical model (Ref 17) and a stochastic
model (as well as a practical guide to implement the
methodology) (Ref 18) permitting circumvention of the
limitations of the DeHoff’s protocol—that the spheroids
are supposed to exhibit the same aspect ratio—and to
consider a bivariate distribution, in size and in shape, of
diluted spheroid particles embedded within a matrix (see
Section 3.4 for further details related to the Cruz-Orive’s
protocol).

3. Some Stereological Protocols of
Particular Interest for Quantification of
Thermal Spray Coating Architectures

3.1 Delesse’s Protocol (1847)

The Delesse’s principle can be expressed as (Ref 5): if a
structure containing some objects of a phase p is sectioned
randomly, then the area density AA of profiles of objects

of phase p on a section is equal to the volume density VV

of the phase in the structure:

AA ¼ VV ðEq 3Þ
A brief description of the mathematical solution is
displayed hereafter.

Let’s consider a distribution of bodies of interest
dispersed in a volume Vtest, as depicted in Fig. 8.

Let’s consider a slice of thickness dx and surface Atest

through V. Within this slice of volume l2 Æ dx, let’s name
(VV)a the relative volume of bodies of interest. The
volume of bodies of interest within the slice a, dVa, can be
expressed as:

dVa ¼ l2 � dx � VVð Þa ðEq 4Þ
Let’s name Aa(x) the relative distribution of the surface of
the bodies of interest in the surface Atest and Aa its average
value, as depicted in Fig. 9. The volume of bodies of
interest dVa can be in such conditions expressed also as:

dVa ¼ AaðxÞ � dx ðEq 5Þ

Equaling Eq 4 and 5 leads to:

l2 � VVð Þa¼ AaðxÞ ðEq 6Þ

Integrating Eq 6 over the domain (i.e., from 0 to 1) leads
to:

Z l

0

dVa ¼
Z l

0

AaðxÞ ðEq 7Þ

And finally to:

Va ¼ l � Aa ðEq 8Þ

Fig. 8 Bodies of interest dispersed in a volume Vtest (l3) and
slice of thickness dx and surface Atest (l2) intercepting those
bodies

Fig. 7 Ellipsoids of revolution: (a) oblate shape; (b) prolate
shape
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Dividing both terms of Eq 8 by Vtest leads to:

Va

Vtest
¼ l � Aa

V
¼ Aa

Atest
ðEq 9Þ

Identifying Va/Vtest and Aa/Atest to VV and AA, respec-
tively, leads to AA = VV.

In order to avoid statistical biases in the analyses, the
features considered in the analysis have to be circum-
scribed into the reference surface (Fig. 10).

3.2 Saltykov’s Protocol (1946)

Let’s consider a dilute phase made of spherical features
of a random particle size distribution into an aggregate.
Let’s consider a randomly oriented intercept plane. The
diameters of the circles resulting from the interception are
ranked into different size classes D. From a statistical point

of view, one can demonstrate that the largest spherical
feature embedded within the structure will be intercepted
at its center and that the diameter of the resulting inter-
cepted circle, Dmax, will correspond to the one of the
sphere. Under such conditions, let’s consider n size classes
of size Dmax/n.

From Fig. 11, the probability of measuring a circle of
radius r ± 2r (corresponding to a data point that would fall
into one size class) from a sphere of radius R is equal to
the thickness of a slice of the sphere with that diameter:

Probability ¼ r � dr

RðR2 � r2Þ1=2
ðEq 10Þ

Following this latter approach, the Saltykov’s protocol
aims at solving a set of coupled equations (Ref 12) in
which the independent variables are:

• The number of circles of various radius falling within
each size class (and recorded following a discrete his-
togram), NAi

• The number of spheres per size class, NVj

Independent variables are linked by a transfer matrix
a0ij:

NAi ¼ a0ij � NVj ðEq 11Þ

Inversing the matrix leads to:

NVj ¼
1

D

� �

� aijAi ðEq 12Þ

where D is the size of a size class. As already quoted, the
number of size classes varies usually between 10 and 15
from a practical viewpoint. Decreasing this number no
longer permits a pertinent description of the unfolded
distribution. Increasing this number requires a very
significantly increase in the number of data points.

(a)

(b)

Fig. 10 Avoiding statistical biases in Delesse’s protocol by
considering only features circumscribed into the reference area
and by adjusting the reference area: (a) initial image with a
dispersion of features of interest; (b) adjusted image
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Fig. 9 Relative distribution of the surface of the bodies of
interest Aa(x) in the surface Atest and its average value r z
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Fig. 11 Discrete distribution of the relative diameter of a circle
resulting from the interception of a sphere by a plane
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The alpha matrix first calculated by Saltykov that
makes it possible to unfold sphere size distribution from
measured circle diameters is displayed in Table 1.

3.3 DeHoff’s Protocol (1962)

As already quoted, the DeHoff’s protocol derives
directly from the Saltykov’s analysis, but rather than being
applied to spherical features, it considers ellipsoidal ones.

Let’s consider an aggregate made of ellipsoidal features
of same shape, that is to say either oblate or prolate.
Identical to Saltykov’s protocol, the distribution of the
number of features per unit test volume and per size class
D, NVj , can be expressed as a function of the number of
interceptions of features per unit test area and per size
class, NAi , as follows (Ref 13):

NVj ¼
k0
D
� aij � NAi ðEq 13Þ

where aij represents the Saltykov’s alpha matrix and D the
size increment. For oblate features, D corresponds to
mmax/i, where mmax is the minor axis of the largest inter-
cepted ellipse. The coefficient k0 represents a shape
dependent factor for prolate or oblate spheroids (Fig. 12).
It is expressed for example for oblate particles as follows:

k0ðoblateÞ ¼
Z p

2

0

Z p
2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2 � 1ð Þ � cos2 / sin h

p

p=2
� d/ � dh

ðEq 14Þ

where / is the angle between the normal to the test plane
(i.e., polished plane) and the z-axis, and h is the angle
between the projection of this normal on the xy plane and
the x axis, with respect to a standard Cartesian coordinate
system.

The unfolded distribution of volume fraction per size
class j is simply obtained by multiplying the number of
features per unit test volume and per size class VVj by the
volume of the considered ellipsoid (i.e., Voblate =
4/3 Æ p Æ m Æ M2 or Vprolate = 4/3 Æ p Æ m2 Æ M). Finally, the
volume fraction of features results from the summation of
the number of features per unit test volume and per size
class VVj over the number of class size.

3.4 Cruz-Orive’s Protocol (1976)

Cruz-Orive considered systems of particles consisting
of either prolate or oblate ellipsoids of revolution
of variable sizes and of variable shapes (Ref 17, 18). In
this case, the distribution of the number of features per
unit test volume and per size class D, NVij , can be
expressed as a function of the number of interceptions
of features per unit test area and per size class, NAkl , as
follows:

NVij ¼
X

aijkl � NAkl ðEq 15Þ

where the subscripts i and j refer to the size and shape in
3-D and the subscripts k and l to the size and shape in 2-D
(intercept plane).

If the approach is identical to the DeHoff’s protocol,
the determination of the size and shape distributions
requires a much larger database due to the consideration
of a bivariate distribution (i.e., each size class is made of
10 to 15 shape classes).
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Fig. 12 Evolution of the correction factor k0 vs. the intercept
ellipse axial ratio for oblate and prolate ellipsoids of revolution

Table 1 Alpha matrix (Saltykov) to unfold sphere size distribution from measured circle diameters

NA(1) NA(2) NA(3) NA(4) NA(5) NA(6) NA(7) NA(8) NA(9) NA(10) NA(11) NA(12) NA(13) NA(14) NA(15)

NV(1) 0.1857 )0.0750 )0.0261 )0.0132 )0.0080 )0.0054 )0.0039 )0.0028 )0.0022 0.0016 )0.0013 )0.0009 )0.0007 )0.0004 )0.0001
NV(2) 0.1925 )0.0776 )0.0270 )0.0136 )0.0083 )0.0055 )0.0039 )0.0029 )0.0022 )0.0016 )0.0012 )0.0007 )0.0006 )0.0002
NV(3) 0.2000 )0.0804 )0.0280 )0.0140 )0.0085 )0.0056 )0.0040 )0.0028 )0.0021 )0.0016 )0.0010 )0.0006 )0.0003
NV(4) 0.2085 )0.0836 )0.0290 )0.0146 )0.0088 )0.0057 )0.0041 )0.0028 )0.0020 )0.0013 )0.0009 )0.0004
NV(5) 0.2182 )0.0872 )0.0301 )0.0151 )0.0090 )0.0058 )0.0040 )0.0027 )0.0018 )0.0010 )0.0005
NV(6) 0.2294 )0.0913 )0.0319 )0.0155 )0.0091 )0.0059 )0.0038 )0.0026 )0.0015 )0.0006
NV(7) 0.2425 )0.0961 )0.0329 )0.0163 )0.0094 )0.0058 )0.0037 )0.0021 )0.0009
NV(8) 0.2582 )0.1016 )0.0346 )0.0168 )0.0095 )0.0057 )0.0031 )0.0013
NV(9) 0.2773 )0.1081 )0.0366 )0.0174 )0.0093 )0.0051 )0.0020
NV(10) 0.3015 )0.1161 )0.0386 )0.0178 )0.0087 )0.0033
NV(11) 0.3333 )0.1260 )0.0408 )0.0171 )0.0061
NV(12) 0.3779 )0.1382 )0.0420 )0.0130
NV(13) 0.4472 )0.1529 )0.0360
NV(14) 0.5774 )0.1547
NV(15) 1.0000
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3.5 Miscellaneous Protocols

The previously presented protocols consider surfaces as
probing elements. Other protocols exist based on other
types of ‘‘probing’’ elements, such a points and lines.
Table 2 displays a few of these protocols.

4. Concluding Remarks

Stereological protocols of the first order aim at statis-
tically quantifying 3-D structures from 2-D—randomly
oriented—plane sections. Several types of analysis can be
carried out, depending on the characteristic of the
‘‘probing’’ element: points, lines or areas.

Protocols based on the measurement of areas on plane
sections can be implemented to analyze the architecture of
thermal spray coatings, from the very simple Delesse’s
protocol quantifying the volume fraction of any feature to
the more sophisticated Cruz-Orive’s protocol quantifying
the bivariate size-shape distribution of features considered
as spheroids of revolution. The forthcoming Part II will
address some key points to implement from a practical
point of view such protocols.
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Table 2 Miscellaneous stereological protocols

What is measured? Stereological protocol What is determined?

Point counting ‹ PP = VV fi Volume fraction
‹ PL = SV/2 fi Surface density
‹ PA = LV/2 fi Linear density

Length measurement ‹ LV = VV fi Volume fraction
‹ LA = 4/p Æ SV fi Surface density

Note: PP, Point fraction (number of points per test point); PL, Number of point intersections per unit length of test line; PA, Number of points per
unit test area; LA, Length of lineal elements per unit test area; LV, Length of lineal elements per unit test volume; AV, Surface area per unit test
volume; VV, Volume fraction (volumes of features per unit test volume).
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